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We have used the functional sweeping method to find a solution for the nonlinear 
problem of the conduction of heat in the case of an infinite plate with a rec- 
tangular notch. Additionally, we have studied the temperature field. 

Let us examine an infinite isotropic crystal plate out of which a rectangular section 
with dimensions 2ai • 2a2 has been cut. The plate is heated over the x 3 = • surfaces in 
accordance with the Stefan-Boltzmann law. A heat flow q0 is specified for the rectangular 
boundaries of the plate. The thermophysical characteristics of the plate are dependent on 
temperature. To determine the stationary temperature field in the plate, we have available 
to us the following boundary-value problem: 

: o--ZT oT, = ~  
( i )  

% (t) Ol ~ ((~st, _ qc) = 0 when xs - -  -4- 8, 
Ox~ ( 2 ) 

at 
(t) ~ = ~ qo when X~ = :zh ai, [xi• < at• , 

ox~ (3) 

at I = 0 (i = 1, 2), ( 4 )  tllxil_,: = < co, Ox---~ Jxi i-~= 

where 
2, i = 1, 

i + 1 - -  1, i = 2 .  

For many nonmetallic crystals at temperatures below the Debye temperature the coefficient 
of thermal conductivity is proportional to the cube of the temperature [i]: 

(t) = • (5 )  

In this case the boundary-value problem (1)-(4) is completely linearized by means of the 
Kirchhoff variable 

1 t 
= - -  S ~(t) dt (6) 

0 

which is then brought to the form 

a~ azo a~ 
ok + N  +o- f (7) 
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O0. 
- -  -4- (40"3'0' - -  qc) = 0, when x3 = --i- 8, ( 8 ) 
Ox3 

O~ 
• = ~qo  when xi : •  Ixe•  ~ (i = 1, 2), ( 9 )  

00. 
] = o (,: = 1, 2). ( lO)  

Since the thermal-conductivity problem (7)-(10) is symmetrical relative to the midsec- 
tion of the plane forming the plate, the differential equation for the determination of the 
Kirchhoff variable turns out to be a special case of the familiar [2] equation for an anise- 
tropic plate and has the form 

020, Oz0 
ax~ ~- ax~ ~0. = _ ~.Oo, ( i i )  

w h e r e  

8~ ~ (x,, xv xs) dxs, ~2= 4~,,, Qc = 1 qe 

U n d e r  b o u n d a r y  c o n d i t i o n s  ( 9 )  a n d  ( 1 0 ) ,  % i s  a f u n c t i o n  o f  x l ,  x 2 .  

I n t r o d u c i n g  t h e  s u b s t i t u t i o n  T = % - Qc ,  we come  t o  t h e  b o u n d a r y - v a l u e  p r o b l e m  

OZT OZT 
Ox~ l-  0 " - ~  = I ~ T = 0 '  

OT 
X : : : : [ :qO when Xi:"}"ai ,  Ixi• ( i=1 ,  2), 

dX i 

~ = o  ( i = , ,  2). Tll"it-'| --- 0' 0--~ 'xiJ-| 

(i2) 

(13) 

(i4) 

Problem (12)-(14) is dealt with in [3]. With the method of extending the unknown func- 
tion T(xl, x 2) through zero over the entire plane, the problem is reduced to the solution 
of a differential equation with singular coefficients which take into consideration the boun- 
dary condition at the outline of the rectangle. The unknown values of the function T at 
the boundary have been expanded into Fourier series. The solution of the equation is found 
through a convolution of the fundamental solution of the Helmholtz equation and of the right- 
hand side of this equation in the form 

1 2 X i •  

O ( x .  x~)=  2 ~  ,=1 ~• qo., [Ko (l~r+) + Ko OrF)] - :  

n~  0 r i+ 

x~--a~ Kx(13tT[)] } d~, (15)  

where 

O (xl, x2) = T (X1, X2) M (X1, %2), M (x x, x~) = 1 - -  M (x 0 M (x~), 

= ~(I)__ ~n 
M ( x i ) = S + ( x i - - ~ a i ) - - 8 2 ( x i - - a i ) ,  r~ V'(x i-4-ai) 2--~2, -n - - ' '  ai 

oo 

Ol.~=~i+o M (x._0 = ~ b~ ~ cos ( ~ : ~  x~:~)M %_+). 
n=O 
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The unknown Fourier coefficients bn(i) in solution (15) have been found from such an 
infinite system of linear algebraic equations 

b~ ~ 1 6 3  A(~ '~ O-Dh  (~ (i:= 1, 2; k----0, l ,  ...), 
rt=0 

(16) 

where 

gai: t : l  

B(~ ) = ~ - -  

h (~, b, A, ;~.)= 

o o  
"~" E ,'~hn/l(i'i• b(nt:l:l) _1_ Bii) ," 

rt=0 

~fl(~, ai-,.l, g(~, 2 a i ) d ~ ;  
~ai• 1 o 

2a i~  t 2a i 
= ~ E(k)  ( - -  1)nq-hq-1 3" C O S ~ ' ( i : t : l ' ~  C O S ~ ( i ' ~ ( ; '  ~ ) d ; d ~ ;  

0 0 

2a i.+.l 2ai 

qo j" {(_l)~e(k)cosX(~• Ko([~]/'~2q_;Z) d ; _  
~w'ai + 1 0 0 

--  h (~, a,+. ~+'))  [KO (6 V4a~ + ~) + t(o (1~)1} d~; 

2b--~, ~ k = n = O ,  

2b--~)cosk~-- 1__ sinL~, k = n = l ,  2, ...; 

(-- 1)~+" 2e (k) (La sin i~  --  k 4: n, 

- -  ~.,~ s in  k .~) ,  k,  n = O, 1 . . . .  ; 

[ 2b--~, k=O; 0~5, k=O; 
[,(~, b, ~.~)= /2(.~1) k sin~,~, k = 1 , 2  . . . .  ; 8(k)= { k=1,2 .... ; 

~; KI 0 V ~  + ;~). 
g (~, ;) = V~,~ + ;~ 

Let us prove that system (16) has a solution which converges along the space norm s 
i.e., 

s [bn(~ oo (i----l, 2), (17) 
n=O 

And for its solution we can use the method of reduction. For this we estimate the inte- 
grals in terms of which the coefficients of the system are expressed. 

Since for g > 0 MacDonald function K0($) is positive and diminishes monotonically, then 
according to [4] 

0 0 

=arsh(  ~ ) [~z + (X~• - ' / ' .  
Consequently: 

const In k 
]1i (k) < k (18) 

Integrating the integral by parts 

2ai• 
I ~  (k) = ~ 

0 
sin (x~ '• ~) K0 (6 VW%-~ ) d~, 
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we obtain 
1~ (k) = 1 [Ko (213ai) - -  Ko (213-V'a~ + a~ ) - -  

2a i:h l 

--[3 S c~177 2a,)d~]. 
0 

(19) 

Since the function g(~,  2a i) is absolutely integrable in the interval [0, 2ai+~], the last 
term in Eq. (19) vanishes [5]. Then for Iai(k) we have the estimate 

4~ (~) = - T - -  + o . (20) 

In order to obtain an estimate of the integral 

2a i~  1 2af 

0 0 

we will use the integral representation [6] 

~f ~:~ @ V U 4 ~ )  = i n sin nf 
V~ + ~ V~ + n * 

0 

exp (--  ; "V~ -l- n ~) d~. 

After a number of transformations we will obtain 

2 . i [  13~ + (zi~• I~i (n, t~) = (~,~:1))3 + 
[3"+ (Z~))~ [3~ + (~.f~:~')" + _n" 4- 

0 

-+ ~ __ (~o)zJ sinZ ~lai [I - -  exp (--  2ai+ 1 V ~ - ~  n2)l d~l. 

(21) 

Let us examine each of the terms in (21). 

0 ~< i sin2 lla~ 
n~ + [3~ + (z~i+~))~ 

0 

0 

For the first term we have [6] 

[I -- exp (-- 2ai~ I ]/~ 4- N~)] dN 

sin~'laidvl n l[3~4-(;~i~:O)Zl-'/2 (1- -  exp (-- 2a~ 3 / ~ 4 - ( ~ : ~ I ) ) z ) ) .  
n ~ + [3~ + (~(f~:~))~ = '4 

(22) 

The second term in (21) can be written in the following form: 

(~i))2 i sin 2 ~la~ [3 n2_ (~o)2 [1 -- exp (-- 2ai+_l "l/~ z 4- ~12)1 drl = -{ -  Kx (213ai• -- 

0 

2a l 

- -a i •  115 K1(213 "Va~ 4-'ag ) 4- 1 f cos~O d ~ --~ ~ --~ g (~, 2at: ~) d~. 
2 ] /a  i -4- a~ o 

(23) 

The following estimate for the integral follows out of (22) and (23): 

I~(n,k)  =Cln+C~n 2 4- k ~ 4- o ( 1 ) (C~ --- c ~  z 4- k~ 

Integrating the integral by parts several times 

(24) 
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Fig. I. The dimensionless temperature O as a function of X 2 = 
x2/6 when X x = i0, ii, 12, 14; q = qc/q0 = 0.5. 

Fig. 2. The dimensionless temperature O as a function of X 2 
when X I = 12; q = 0.i, 0.3, 0.5. 

I~ (n, " /0 = 
2ai~l 

(gC,,• )2 __ (gii• [L~i• sin 3,~z• ~ - -  ;~(.i• X 

0 

and taking into consideration the properties of the function under the integral sign, we 
obtain the following estimate: 

l~, (n, k) = c~ + o ( l ) 
n~.~---? ~ " 

Analogously, through integration by parts for the integral 

~al• 1 ] 

(25) 

we will have 

&, (~) = - -  

In order to estimate the integral 

§ 

2al• 2a t 
l . i  (~) -~- ~ COS ~(hi:t:l) ~ .[ 

0 0 

we will use the following integral representation [6]: 

Ko(l~ ~ + ;9 = i ' cos n~ 
�9 V', i~+ p~ 
fl 

exp ( - -  ~ l / ~  + I~ 2) tin. 

As a result we will obtain 

&i (/0 = ' 
1 

1 ~ + (~g• 
- - e x p  ( - -  2ai• ~ 

(26) 
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2ai'4-1 ~ ~1 sin 2~lai• 
- -  ] cos ~,~i+1) ~ (~, 2ai) d~ + j [~z 

o o ~ + 

exp (--2ai V]~ ~ + ~1 z) d~}. 

From the absolute integrability of the function 

it follows that the integral f _ 2 a i •  
0 

for Isi(k) we have the estimate 

16i(k) const (k-~) = k- - - i - -+o  

Using estimates (18), (20), (24)-(27), for the coefficients of system (16) we obtain 
the following estimates: 

K, (~/~ -+- ~)/l/4-a~ -{-- ~z in the interval [ 0, 
2ai4-1 

Cos)~(k/• ~(~, 2ai)d~ vanishes as k § ~. Therefore, 

(z7) 

n 2 + o  , o~ = - -  + o  ( n = l ,  2 . . . .  ), 
, n 

A~t.n,i) = L8____2__~ ._i_o ( l ) A~in,~• = La~n--~-Ls~ ( l ) 
n~k2 ~ , n 2 + k 2 + o  n ~ + k~ 

(k, n = l ,  2 . . . .  ) ,  

(28)  
B(ki) < L6~ ln___~k (k = 1, 2 . . . .  ), Lpi = const. 

k 

From estimates (28) and condition (17) it follows that 

tA .i'12 < oo, <. --./oo (i = 1, 2). ( 2 9 )  
k , n = 0  h = 0  

The derived estimates enable us to apply the theory of infinite-system solubility to system 
(16) [7]. The approximate solution of the system can be obtained by the reduction method. 

Let us undertake a numerical analysis of the derived results for A l = al/6 = i0, A 2 = 
4/6 = 20, Bi = ~262 = 0.i, using formulas (15), (5), and (6). 

Figure 1 graphs of the dimensionless temperature 8 = t 4 q~-~/~06 as a function of the 
dimensionless coordinate X 2 = x2/6 for the case in which q = qc/q0 = 0.5 in the vicinity 
of the notch and at its boundary. We can see from the graphs that the maximum value of the 
temperature is attained at the break point. 

The dimensionless temperature @ as a function of X 2 for the case in which X I = xi/6 = 
12, q = 0.i, 0.3, 0.5 is shown in Fig. 2. From these functions we see that the temperature 
increases as q increases. 

NOTATION 

t, temperature field; O, Kirchhoff variables; 26, plate thickness; 2a 2 • 2a:2 , notch 
dimensions; xl, xi, x3, rectangular Cartesian coordinates; I, coefficient of thermal conduc- 
tivity; qc, heat flow from emitter at the surfaces x a = • 03, visible coefficient of radia- 
tive heat exchange; %, heat flow at the rectangular boundaries of the plate; S• asym- 
metric unit functions; Kv($) , MacDonald function of order v. 
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